Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae.
نویسندگان
چکیده
We have investigated the localization and function of the epidermal growth factor receptor (EGFR) in normal cells, in cholesterol-depleted cells and in cholesterol enriched cells. Using immunoelectron microscopy we find that the EGFR is randomly distributed at the plasma membrane and not enriched in caveolae. Binding of EGF at 4 degrees C does not change the localization of EGFR, and by immunoelectron microscopy we find that only small amounts of bound EGF localize to caveolae. However, upon patching of lipid rafts, we find that a significant amount of the EGFR is localized within rafts. Depletion of the plasma membrane cholesterol causes increased binding of EGF, increased dimerization of the EGFR, and hyperphosphorylation of the EGFR. Addition of cholesterol was found to reduce EGF binding and reduce EGF-induced EGFR activation. Our results suggest that the plasma membrane cholesterol content directly controls EGFR activation.
منابع مشابه
Heterologous desensitization of EGF receptors and PDGF receptors by sequestration in caveolae.
Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) receptors have been reported to signal via caveolin-containing membranes called caveolae. In contrast, others report that EGF and PDGF receptors are exclusively associated with caveolin-devoid membranes called rafts. Our subcellular fractionation and coimmunoprecipitation studies demonstrate that, in the absence of ligand, ...
متن کاملCholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling.
Angiotensin II (Ang II) induces transactivation of the epidermal growth factor (EGF) receptor (EGF-R), which serves as a scaffold for various signaling molecules in vascular smooth muscle cells (VSMCs). Cholesterol and sphingomyelin-enriched lipid rafts are plasma membrane microdomains that concentrate various signaling molecules. Caveolae are specialized lipid rafts that are organized by the c...
متن کاملCholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK).
Previously we showed that activation of Erk in quiescent cells occurs in the caveolae fraction isolated from fibroblasts. Since the structure and function of caveolae is sensitive to the amount of cholesterol in the membrane, it might be that a direct link exists between the concentration of membrane cholesterol and mitogen-activated protein (MAP) kinase activation. We acutely lowered the chole...
متن کاملDifferential signaling pathways in angiotensin II- and epidermal growth factor-stimulated hepatic C9 cells.
Caveolin1 (Cav1) is an important component of the plasmamembrane microdomains, such as caveolae/lipid rafts, that are associated with angiotensin II type 1 (AT(1)) and epidermal growth factor (EGF) receptors in certain cell types. The interactions of Cav1 with other signaling molecules that mediate AT(1) receptor function were analyzed in angiotensin II (Ang II)- and EGF-stimulated hepatic C9 c...
متن کاملCholesterol levels modulate EGF receptor-mediated signaling by altering receptor function and trafficking.
A variety of signal transduction pathways including PI turnover, MAP kinase activation, and PI 3-kinase activation have been shown to be affected by changes in cellular cholesterol content. However, no information is available regarding the locus (or loci) in the pathways that are susceptible to modulation by cholesterol. We report here that depletion of cholesterol with methyl-beta-cyclodextri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 115 Pt 6 شماره
صفحات -
تاریخ انتشار 2002